Развитие острого коронарного синдрома

Доказательствами того, что причиной развивающегося инфаркта миокарда является тромбоз коронарной артерии, возникающий, как правило, на месте имеющейся атеросклеротической бляшки с поврежденной поверхностью, послужили исследования английских морфологов Davies & Thomas. Авторы обнаружили в 74 из 100 вскрытии умерших от ИБС в первые 6 ч от начала симптомов внутрипросветный тромб. Причем все тромбы были расположены в местах разрывов богатых липидами атеросклеротических бляшек, в значительном проценте случаев тромботические массы проникали через трещину внутрь бляшки и тем самым увеличивали ее размеры.

Еще одной классической морфологической работой, свидетельствующей о наличии внутрикоронарного тромбоза при нестабильной стенокардии (НС), является исследование E.Falk, опубликованное в 1985 г. Среди 25 внезапно умерших больных с НС внутрикоронарный тромбоз был обнаружен практически у всех. У подавляющего большинства умерших тромбы располагались в местах разрывов бляшек, имели слоистую структуру, что указывало на различный возраст тромботических масс, постепенно суживавших просвет коронарной артерии.

Совершенствование ангиографического оборудования, многочисленные ангиографические исследования больных с нестабильной стенокардией без лечения и с введением тромболитических препаратов и, наконец, создание коронароангиоскопических катетеров позволило визуализировать внутреннюю сторону коронарных артерий и подтвердить патогномоничность внутрикоронарного тромбоза при нестабильной стенокардии.

Наличие общих морфологических признаков в виде поврежденной атеросклеротической бляшки с разрывами ее поверхности и формированием внутрикоронарного тромбоза при инфаркте миокарда с зубцом Q и без, НС и в случае осложнений коронарной баллонной ангиопластики (КБА) привело к формированию понятия острого коронарного синдрома (ОКС), в патогенезе которого ведущую роль играют нарушение целостности атеросклеротической бляшки и тромбоз коронарной артерии.

В развитии атеросклеротического процесса важную роль играет повреждение эндотелия. Среди повреждающих гемодинамических факторов рассматривают травматизацию эндотелия потоком крови в разветвлениях артериального русла, особенно выраженную у больных с артериальной гипертонией. Повреждению эндотелиальных клеток способствует гиперхолестеринемия, гипергликемия, курение, повышенное содержание катехоламинов, иммунных комплексов, а также инфекция.

На ранних стадиях развития атеросклеротического поражения в артериях обнаруживают так называемые липидные полосы. Полагают, что стадия липидных полос соответствует динамическому балансу между поступлением и выведением липидов из бляшки. Вероятно, на этом этапе, воздействуя на факторы риска, можно добиться уменьшения поступления липидов в бляшку, способствовать развитию экстрацеллюлярного матрикса и тем самым рубцеванию бляшки.

В случаях, когда поступление липидов преобладает на выведением, бляшка увеличивается в размерах, покрышка истончается. На этой стадии развития, бляшка становится легко ранимой, склонной к разрывам.

Атеросклеротическая бляшка является основным элементом атеросклероза. В атеросклеротической бляшке выделяют ядро, которое состоит из липидов, ограниченных фиброзной капсулой. Участок бляшки, выступающий в просвет сосуда, называется покрышкой, а противоположный, граничащий с сосудистой стенкой - основанием бляшки. Сегменты покрышки бляшки, переходящие на неизмененную стенку артерий, называются “плечевой” областью бляшки.

Ядро бляшки содержит свободный холестерин и его эфиры. Ближе к периферии ядра располагаются так называемые пенистые клетки, являющиеся макрофагами, заполненными липидами. Макрофаги, доставив липиды в ядро бляшки, разрушаются и их содержимое увеличивает ядро бляшки.

Плечевые области покрышки бляшки в наибольшей степени подвергаются нагрузке при спазме и дилатации артерий, они наиболее тонкие из всей покрышки, и именно в плечевых областях чаще всего происходят разрывы бляшек.

Бляшки бывают концентрическими, вызывающими фиксированную степень стеноза коронарной артерии, и эксцентричными, при которых степень стенозирования может варьировать. Общепризнанно, что при ОКС эксцентрические стенозы встречаются чаще.

Разрыв покрышки бляшек определяется рядом физических факторов и чаще наблюдается в местах истончения фиброзной покрышки бляшки и инфильтрации пенистыми клетками. Эксцентрично расположенные бляшки чаще разрываются в плечевой области. Патологоанатомическое сравнение покрышек интактных и лопнувших бляшек позволило установить, что склонность к разрыву зависит от хронического “стресса” артериальной стенки или так называемой усталости покрышки, локализации, консистенции и размеров ядра, а также геометрии бляшки и характеристик потока крови.

Разрыв бляшки не является чисто механическим процессом. У больных ОКС анализ атерэктомического материала показал наличие в бляшке участков богатых макрофагами. Макрофаги способны разрушать экстрацеллюлярный матрикс за счет фагоцитоза и секреции протеолитических ферментов таких как активаторы плазминогена, металлопротеиназы (коллагеназы, желатиназы. стромелизины). действие которых ослабляет фиброзную покрышку бляшки и способствует ее разрыву.

Металлопротеиназы и их тканевые ингибиторы участвуют в процессах ремоделирования сосудов. На культуре макрофагов, полученных из человеческих моноцитов, было показано, что разрушение фиброзной покрышки атеросклеротической бляшки связано с повышенной активностью интерстициальной коллагеназы и желатиназы. Таким образом, можно предположить, что металлопротеиназы, содержащиеся в бляшке и моноцитах, участвуют в дестабилизации покрышки бляшки у больных ОКС.

Вход, выживаемость и репликация моноцитов (макрофагов) в бляшке также зависит от эндотелиальных адгезивных молекул (VCAM-1), хемотаксического белка моноцитов (МСР-1), колониестимулирующего фактора моноцитов (M-CSF) и лимфоцитарного интерлейкина-2.

Макрофаги в бляшке подвергаются апоптозу - запрограммированной смерти. По неясной на сегодняшний день причине макрофаги получают сигнал к гибели, после этого в ядре образовываются протеазы, разрушается ДНК и клетка гибнет. Полагают, что апоптоз несет защитную функцию, препятствуя накоплению липидов в сосудистой стенке.

Неясно, является ли апоптоз причиной активации металлопротеиназ, тем не менее это явление приводит к отшнуровыванию поверхностных микрочастиц клеток и экспонированию на их поверхности фосфатидилсерина, что обеспечивает потенциальную прокоагулянтную активность. Отшнуровывающиеся поверхностные микрочастицы макрофагов являются источником тканевого фактора, активность которого в экстрактах бляшки высокая. Тканевой фактор является основным активатором каскада коагуляции при разрыве бляшки.

В лопнувших бляшках обнаруживают и другие элементы воспаления, включая тучные клетки и нейтрофилы. Тучные клетки находят в небольших количествах в плечевых областях интактных бляшек. Известно, что тучные клетки секретируют протеолитические ферменты: триптазу и химазу, которые в свою очередь активируют проферменты металлопротеиназ. Роль нейтрофилов менее понятна, их редко находят в интактных бляшках, похоже, что они попадают в бляшку вскоре после разрыва ее покрышки.

В результате разрыва ранимой бляшки, сопровождающегося изменением ее геометрии и тромбозом, образуется так называемое осложненное поражение. Быстрое изменение геометрии атеросклеротической бляшки при ОКС на ангиограммах проявляется полной или частичной окклюзией коронарной артерии. Довольно часто причиной быстрых изменений в геометрии атеросклеротической бляшки является пристеночный тромбоз, который в дальнейшем может подвергаться организации и участвовать в прогрессии атеросклероза. При разрыве бляшки в формировании и росте тромба принимают участие множество локальных и системных факторов.

Факторы тромбообразования

К местным факторам относят эрозии или изъязвления в покрышке бляшки, изменения в ее геометрии, определяющие степень стеноза артерии, состав (наиболее тромбогенными являются богатые липидами бляшки). Важно учитывать и величину поверхности тромба с экспонированными на нем тромбогенными белками, определяющими дальнейший рост тромба, а также спастические реакции пораженного сегмента артерии.

К системным тромбогенным факторам риска относят холестерин, липопротеины, уровень фибриногена, нарушение фибринолиза (повышение ингибитора тканевого активатора плазминогена I типа), активацию тромбоцитов и факторов свертывания крови (VII фактор усиление тромбинообразования), обсуждается роль инфекционных агентов (Chlamydia pneumoniae, Cytomega-lovirus, Helicobacter pylori). Пристеночные тромбы могут частично лизироваться “за счет” активации эндогенного фибринолиза или замещаться соединительной тканью при пролиферации сосудистой стенки.

Экспериментальные данные о тромбогенности содержимого бляшек весьма ограничены. Тем не менее при сравнении тромбогенных свойств атеросклеротической бляшки на разных этапах ее развития было показано, что в наибольшей степени тромбогенные свойства выражены у липидного ядра, содержащего эфиры холестерина и тканевой фактор.

Тканевой фактор (ТФ) представляет собой трансмембранный гликопротеин, инициирующий каскад коагуляции, который, как полагают, является основным регулятором свертывания, гемостаза и тромбообразования. Тканевой фактор образует высокоафинный комплекс с VII/VIIa фактором, комплекс ТФ-VIIa активирует IX и Х факторы свертывания, что в свою очередь приводит к образованию тромбина.

Анализ атероэктомического материала больных с НС показал наличие связей между ТФ и макрофагами. Об исключительной роли ТФ в формировании тромба на поверхности лопнувшей атеросклеротической бляшки свидетельствуют последние экспериментальные данные о том, что применение рекомбинантного ингибитора ТФ (rTFPI) способно существенно ограничить рост тромба на поверхности лопнувшей атеросклеротической бляшки.

Появляется все больше доказательств, что моноциты и лейкоциты обладают тромбогенными свойствами, экспрессируя ТФ. Имеются данные о повышении уровня С-реактивного белка при ОКС. Повышение холестерина, катехоламинов, курение и возможно некоторые инфекционные факторы могут способствовать активации свертывания крови.

Однако примерно у одной трети больных, умерших внезапно от коронарной патологии, не находят разрывов в богатых липидами молодых бляшках, а обнаруживают лишь поверхностные эрозии в плотных фиброзных бляшках, существенно суживающих просвет коронарных артерий. В этих случаях роль системных тромбогенных факторов, а также гиперкоагуляции представляется особенно важной. В пользу этого предположения свидетельствуют и данные о том, что нормализация уровня холестерина уменьшает тромбогенные свойства крови у больных с гиперлипидемией.

Роль инфекционных агентов в патогенезе атеротромбоза заключается в активации циркулирующих моноцитов, лейкоцитов, повышении синтеза и активации ТФ, активации тромбоцитов, a также повышения уровня фибриногена.

Стеноз коронарных артерий

Работами Maseri и coaвт. доказана роль спазма коронарных артерий в патогенезе ОКС. Склонность к спазму может быть результатом дисфункции эндотелия в сегменте расположенном вблизи атеросклеротической бляшки, или в нарушении реакции сосуда в месте самой атеросклеротической бляшки. Спазм артерии с поврежденным эндотелием вызывают тромбоксан и серотонин, содержащиеся в тромбоцитах, а также тромбин.

Обсуждая роль спазма в патогенезе ОКС, необходимо упомянуть о двух прямо противоположных по своему действию на тромбоциты и гладкую мускулатуру веществах: тромбоксане А2 и простациклине, являющимися конечными продуктами метаболизма арахидоновой кислоты. Тромбоксан А2 образуется в тромбоцитах и выделяется в кровоток в процессе реакции освобождения. Он является мощным проагрегантом и вазоконстриктором.

Простациклин образуется в эндотелиальных клетках сосудов и является мощным системным вазодилататором и антиагрегантом, что обусловлено активацией в мембране тромбоцитов аденилатциклазного механизма, приводящего к увеличению в тромбоцитах содержания циклического АМФ, уменьшению свободного цитоплазматического кальция и снижению агрегационной способности тромбоцитов.

Простациклин является веществом, образующимся in situ. Импульсом к образованию простациклина эндотелиальными клетками может быть повреждение целостности эндотелия, а также появление в кровотоке тромбина. При адгезии тромбоцитов к месту поврежденного сосуда из них выделяется тромбоксан, одновременно с этим из эндотелиальных клеток выделяется простациклин, ограничивая или предотвращая процесс тромбообразования.

С появлением исследований S. Moncada, J. Vane, посвященных метаболитам арахидоновой кислоты, в начале 70-х годов начался период активного изучения роли тромбоксана и простациклина в патогенезе ИБС и стенокардии. В конце 70-х и в 80-х годах была опубликована серия исследований, посвященных роли дисбаланса в соотношении тромбоксан/простациклин в патогенезе коронарного тромбоза. Группой исследователей во главе с J. Mehta была выдвинута гипотеза происхождения стенокардии вследствие дисбаланса в имеющемся равновесии тромбоксана и простациклина.

Разрыв атеросклеротических бляшек

При анализе летальных исходов от тромбоза коронарных артерий установлено, что только в 25% случаев тромбоз связан с эрозией эндотелия, а в остальных - с разрывом бляшек. Другие авторы полагают, что эрозии эндотелия чаще встречаются у женщин. Интересно, что не все разрывы бляшек и связанные с ними тромбозы приводят к клиническим проявлениям острого коронарного синдрома. Исследователи показали, что у 17% больных, умерших от некоронарных причин, находят небольшие свежие разрывы атеросклеротических бляшек с признаками тромбоза в липидном ядре.

Разрывы мелких бляшек приводят к проникновению тромботических масс внутрь бляшки, стимуляции пролиферации гладкомышечных клеток и дальнейшему росту бляшки. Данный механизм лежит в основе развития хронических стенозов и приводит к развитию стабильной стенокардии. Степень стенозирования в коронарной артерии является важным фактором, определяющим клинические проявления разрывов бляшек. Установлено, что у 81% больных, умерших от тромбоза, развившегося в месте эрозированного эндотелия, были гемодинамически значимые стенозы (і60%).

С другой стороны, среди лиц, умерших от тромбоза коронарной артерии, развившегося на месте лопнувшей бляшки или изъязвленного поражения, больше половины (60%) имели гемодинамически незначимые (<60%) стенозы в коронарных артериях. Эти морфологические данные согласуются с клинико-ангиографическими наблюдениями о том, что возникновение нестабильной стенокардии связано с ростом бляшек в местах умеренных стенозов.

Разрыв бляшек в местах выраженных стенозов не сказывается на коронарном кровотоке, так как длительно существующий стеноз в коронарной артерии способствует развитию коллатерального кровообращения. С другой стороны, разрыв бляшек, умеренно стенозирующих коронарные артерии, чаще проявляется симптомами ОКС из-за отсутствия развитого коллатерального русла.

Тромбинообразование

Разрыв бляшки приводит к экспонированию тромбогенных субстанций субэндотелиальных слоев. В нагруженных липидами макрофагах образуется большое количество тканевого фактора - мощного стимулятора тромбинообразования. Коллаген - мощный стимулятор адгезии и агрегации тромбоцитов содержится как в субэндотелиальных слоях, так и внутри бляшки.

Адгезивный белок - фактор фон Виллебранда (ФВ) присутствует как в плазме, так и в субэндотелиальных структурах, однако неактивированные тромбоциты могут взаимодействовать только с субэндотелиальной формой ФВ. Разрыв бляшки приводит к экспонированию субэндотелиального ФВ, что способствует первому этапу образования тромбоцитарного тромба - адгезии тромбоцитов. Адгезия тромбоцитов происходит вследствие связывания ФВ с рецептором мембраны тромбоцитов гликопротеином Ib.

Основное количество ФВ находится в эндотелии, субэндотелии и тромбоцитах, поэтому его содержание в плазме непостоянно. ФВ выделяется в кровоток в момент повреждения эндотелия и таким образом участвует в регуляции гемостаза. ФВ имеет две основные функции. Первая - связывание и стабилизация VIII фактора in vivo и in vitro (защита VIII фактора от инактивации протеином С и Ха фактором).

Вторая - обеспечение связей между тромбоцитами и сосудистой стенкой (адгезия тромбоцитов) и тромбоцитами (агрегация тромбоцитов). ФВ взаимодействует с компонентами субэндотелия и клеточными рецепторами при высоких скоростях сдвига, т.е. в мелких сосудах и стенозированных артериях. В этих местах это единственный белок, осуществляющий адгезию.

После прикрепления тромбоцитов к поверхности поврежденного эндотелия происходит их склеивание друг с другом, так как процесс агрегации тромбоцитов. Стимулом к агрегации являются многочисленные агонисты, циркулирующие в кровотоке, содержащиеся в атеросклеротической бляшке, субэндотелии, выделяющиеся из тромбоцитов при адгезии и агрегации - тромбин, тромбоксан А2, фактор активации тромбоцитов, серотонин, АДФ, норадреналин, а также нарушение текучести крови в стенозированных участках коронарных артерий.

Помимо тромбоцитов АДФ содержится в эритроцитах, которые и являются основным его источником. АДФ освобождается из эритроцитов при их разрушении в турбулентных потоках. возникающих в суженных атеросклеротическими бляшками артериях.

Каждый агонист, взаимодействуя со специфическим рецептором, образует комплекс, и сигнал передается внутрь тромбоцитов при помощи так называемых вторичных мессенджеров. Агрегация тромбоцитов завершается путем формирования мостиков между адгезивными белками (фибриноген, фактор фон Виллебранда) и активированными рецепторами IIb/IIIa тромбоцитов. Этот конечный этап агрегации тромбоцитов одинаков при всех возможных стимуляциях тромбоцитов.

Рецепторы тромбоцитов представляют собой гликопротеины мембраны, большинство из которых относится к семейству так называемых интегринов. Интегрины находят на поверхностях практически всех клеток, и они участвуют во многих физиологических реакциях. За процесс адгезии тромбоцитов ответственны несколько рецепторов мембраны тромбоцитов, среди которых есть представители семейства интегринов и не интегринов.

Однако основным рецептором, узнающим наибольшее количество лиганд, а именно фибриноген, фибронектин, фактор Виллебранда и витронектин и участвующим в процессе агрегации, является гликопротеин IIb/IIIa (aIIb, b3) поверхностной мембраны тромбоцитов. Механизм действия IIb/IIIa рецептора заключается в его способности узнавать две характерные аминокислотные последовательности. Первая состоит из аминокислот Арг-Гли-Асп, она обнаружена в фибронектине, факторе Виллебранда, витронектине, а также и в a-цепях молекул фибриногена, причем на каждую половину молекулы фибриногена приходится по две ключевых последовательности Арг-Гли-Асп.

Следует подчеркнуть, что “ключевая’’ последовательность Арг-Гли-Асп узнаваема большинством представителей семейства интегринов. Интимные механизмы взаимодействия IIb/IIIa рецепторов с адгезивными молекулами до конца не изучены, но очевидно, что пептиды или мелкие молекулы, содержащие ключевую последовательность аминокислот Арг-Гли-Асп, могут являться потенциальными ингибиторами взаимодействия IIb/IIIa рецепторов тромбоцитов с фибриногеном.

Вторая цепочка аминокислот, узнаваемая IIb/IIIa рецепторами тромбоцитов, представляет собой Лиз-Глн-Ала-Гли-Асп-Вал, она находится в карбоксильном конце g-цепей фибриногена. В отличии от цепочки Арг-Гли-Асп, цепочку Лиз-Глн-Ала-Гли-Асп-Вал обнаружили только в молекуле фибриногена и, вероятно, именно в этом месте фибриноген связывается с IIb/IIIa рецепторами тромбоцитов.

Морфологический анализ коронарных артерий больных, умерших от ОКС, показал, что в некоторых бляшках тромбоцитарные тромбы соединены с интимой сосудов, растут внутрь бляшки, тем самым особствуя увеличению ее размеров. Неокклюзирующие тромбы обычно расположены пристеночно, состоят в основном из тромбоцитов и фибрина и относятся к “белым”. На поверхности этих тромбов расположен слой активированных тромбоцитов.

В других случаях при нарушении целостности бляшки тромб растет внутрь просвета сосуда и может быть неокклюзирующим или окклюзирующим. Финалом активации процесса свертывания на месте лопнувшей атеросклеротической бляшки может быть тромботическая окклюзия сосуда. Тромб, растущий внутрь просвета сосуда и порой окклюзирующий сосуд, в отличие от неокклюзирующего состоит преимущественно из фибрина, эритроцитов, небольшого количества тромбоцитов и является “красным”.

Заключение

Итак, патогенез ОKC связан с образованием тромбоцитарного тромба на поверхности лопнувшей или эрозированной атеросклеротической бляшки. Выраженность ишемии миокарда зависит от степени сужения или окклюзии коронарной артерии, а также ее длительности. Ангиографические и ангиоскопические исследования показали, что для НС чаще характерен пристеночный, неокклюзирующий тромбоз, но, тем не менее, реально уменьшающий кровоток в бассейне пораженной артерии.

Возможны преходящие эпизоды тромботической окклюзии длительностью 10-20 мин. Спазм, эндотелиальная дисфункция могут ухудшать коронарный кровоток. При НС находят также эмболии микроциркуляторного коронарного русла тромбоцитарными агрегатами, приводящие к микроскопическим участкам некроза миокарда. Тромбоцитарные агрегаты представляют собой скопления активных тромбоцитов с экспонированными IIb/IIIa рецепторами, способных адгезировать к лопнувшим бляшкам в системном кровотоке.

При ИМ без зубца Q ангиографическая картина близка к наблюдаемой при НС, внутрикоронарный тромб более устойчивый, периоды окклюзии более длительные (до 1 ч). У больных с ИМ без зубца Q кровоснабжение миокарда, расположенного дистальнее окклюзии, осуществляется за счет коллатералей. Принципиальное отличие больных с ИМ без зубца Q от больных с НС состоит в большей длительности обструкции коронарнои артерии, что приводит к некрозу миокарда. В ограничении размеров ИМ играет роль спонтанный тромболизис, устранение спазма, наличие коллатералей.

ИМ с зубцом Q отличается развитием быстрой, полной и продолжительной (1 ч и более) окклюзии коронарной артерии. Коронарная артерия окклюзируется хорошо фиксированным, прочным коронарным тромбом. Исходу НС в ИМ несомненно способствует сниженный кровоток, создающий повышенную концентрацию тромбогенных факторов in situ. Среди механизмов внезапной коронарной смерти следует учитывать возможность возникновения фатальных ишемических нарушений ритма сердца, связанных с быстрым разрывом бляшки и развитием окклюзирующего тромбоза коронарной артерии.